TABLE ERRATA

444.-Milton Abramowitz \& Irene A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964, and all known reprints.

On p. 561, in the right members of Formulas 15.4 .8 and 15.4.9 the associated Legendre functions of the first kind, P_{b-1}^{b-a} and P_{b-1}^{a-b}, respectively, should be replaced by those of the second kind, Q_{b-1}^{b-a} and Q_{b-1}^{a-b}, of the respective given arguments.

Henry E. Fettis
Applied Mathematics Laboratory
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio 45433
445.-A. Erdélyi, W. Magnus, F. Oberhettinger \& F. G. Tricomi, Tables of Integral Transforms, McGraw-Hill Book Co., New York, 1954.

On p. 227 of Volume II, in the right member of transform 14.3(26), for $I_{\mu}\left[b(y-\gamma)^{1 / 2}\right]$, read $I_{\nu}\left[b(y-\gamma)^{1 / 2}\right]$.

Sakari Inawashiro
Shigetoshi Katsura
Department of Applied Physics
Tohoku University
Sendai, Japan
On p. 290 of Volume II, the polynomials $H(a x)$ and $H(x)$ in formula 20 should be replaced by $H e(a x)$ and $H e(x)$, respectively, so that the integral will correctly read

$$
\int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} x^{2}\right) H e_{m}(a x) H e_{n}(x) d x
$$

Similarly, on p. 291, in formula 21 the integrand should read

$$
\exp \left(-\frac{1}{2} x^{2}\right) H e_{2 m+n}(a x) H e_{n}(x)
$$

Lee C. Bradley

Lincoln Laboratory

Massachusetts Institute of Technology
Lexington, Massachusetts 02173
Editorial note: For notices of further errata in this set of tables, see Math. Comp., v. 15, 1961, pp. 319-321, MTE 304; v. 18, 1964, pp. 532-533, MTE 353; v. 19, 1965, p. 361, MTE 367 ; v. 20, 1966, p. 641, MTE 401; v. 22, 1968, p. 473, MTE 422, pp. 695-696, MTE 424, p. 903, MTE 427; v. 23, 1969, p. 468, MTE 436.
446.-I. S. Gradshteyn \& I. M. Ryzhik, Table of Integrals, Series, and Products, 4th edition, Academic Press, New York, 1965.

On p. 837, in formula 7.374 .4 the exponent of 2 in the right member should be n instead of $-m+\frac{1}{2}$.

Lee C. Bradley

Editorial note: For additional corrections see Math. Comp., v. 22, 1968, pp. 903-907, MTE 428 and v. 23, 1969, pp. 468-469, MTE 437.
447.-C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1961.

On p. 514, the coefficient of x^{12} in the shifted Legendre polynomial $P_{13}{ }^{*}(x)$ should read 67603900 instead of 97603900 .

A. Forbes
M. LAL

Department of Mathematics
Memorial University of Newfoundland
St. John's, Newfoundland, Canada
Editorial note: For a previous announcement of an error in this book, see Math. Comp., v. 17, 1963, p. 334, MTE 335.
448.-T. N. L. Patterson, "The optimum addition of points to quadrature formulae," Math. Comp., v. 22, 1968, pp. 847-856.
Recalculation to higher precision has revealed that a few of the early abscissas given in Table M14 (appearing in the microfiche supplement of this issue) are inaccurate beyond the 12th decimal place. An emended version of Table M14, giving abscissas and weights to 20S, appears in the microfiche supplement of this issue. The weights in the original table are consistent with the corresponding abscissas, so that in practice the difference in results produced by that table and the modified one will be insignificant.

T. N. L. Patterson

Southwest Center for Advanced Studies
Dallas, Texas 75230
449.-Murray R. Spiegel, Mathematical Handbook of Formulas and Tables, McGraw-Hill Book Co., New York, 1968.
 $\pi / 180$ should be rounded correctly to an 8 .

In formula 5.37, on p . 15 , the denominator of the right member should read $\cot B \pm \cot A$.

In formula 7.14 on p .24 , the 10 D value of $\ln 10$ should be rounded up to read 2.3025850930.

In formula 19.29 on p . 108 , the right member should read $3 \pi^{3} \sqrt{ } 2 / 128$, in place of $3 \pi^{2} \sqrt{ } 2 / 16$.

In problem 6(d) on p. 195, the logarithm of . 009848 should read $7.9933-10$.
In problem 27(a) on p. 200, the last equation should read

$$
\sinh (4.846)=63.231+\frac{6}{10}(.635)=63.612
$$

J. W. W.

Table M14 (cont'd)

ABSCISSAE

```
.38335 93241 98730 346921 01
.35740 38378 31532 152381 01
.33113 53932 57976 833091 01
.30457 64415 56714 043341 01
.27774 98220 21824 315071 01
.2506787303 03483 176611 01
.22338 66864%28966 881631 01
.19589 75027 11100 15392( 01
.16823 52515 52207464981 01
.14042 42331 52560 174591 0)
.11248 89431 33186 625751 0)
.84454 04008 37108 83710(-1)
.56344 31304 65927 89972(-1)
. 28184 64894 97456 94339(-11)
.00000 00000 00000 000001 01
```


WEIGHTS

```
.25791 62697 60242 29388(-11
.26115 67337 67060 97680(-1)
. 2641747339 50582 59931(-1)
. 26696 62292 74503 59906(-1)
. 26952 74966 76330 31963(-1)
.27185 51322 94247 91819(-1)
. 27394 60526 39814 325161-11
.27579 74956 64818 73035(-1)
.27740 70217 827%6 81994(-1)
.27877 25147 66137 01609(-1)
.27989 21825 52381 59704(-1)
. 28076 45579 38172 46607(-1)
.28138 84991 56271 50636(-1)
. 28176 31903 30166 02131(-1)
.2818881418 01923 58694(-1)
```


TABEE OF POLYNOMİLS

OF PERIOD e OVER GF(p)

by

ROBERT J. MCELIECE

Notes on the table: For a given e only the irreduciole fectors of $x^{e}-1$ which are not factors of $x^{e^{\prime}}-2$ for $e^{\prime}<$ are given, so what we have really is a table of the factorization of the cyclotomic polynomials $e_{e}(x)$ of order $c, \operatorname{deg}(x)=\mathbb{C}(e)$. The complete factorization f_{j} obtained from the formala $x^{e}-1=\prod_{d \mid}(x)$. As is well-known, the irreducible factors of (x) are all of the same degres-orde (p), and in fact the shape of the complete factorization uny be seen from the orbits used to calculete the \boldsymbol{R}_{1}. In the example,given above, the orbit structure shows that $x^{20}-1$ is - product of 4 irreducibles of degree 4, one of degree 2 and two of degree one. The orbits $(1,3,9,7)$ and $(11,13,19,17)$ exhaust the residues prime to 20 , so that ${ }_{20}(x)$ is product of 2 irreducibles of degree 4.

If : polynomiel $f(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}$ divides $e_{e}(x)$, then so coes 1 te reciprocal polynomial $P(x)=a_{n}+\varepsilon_{m-1} x+\ldots+a_{0} x^{m}$, and only one member of reciprocal pair is listed. For those e which divide en integer of the form $p^{t}+1$, each irreducible divisor of $e^{(x)}$ is selr-reciprocal; this is indicated by "P" (since the polynomials se then palindromes) after the entry e. When e is either an odd prime r (or twice an odd Prende and $(x)=x^{r-1}+x^{r-2}+\ldots+x+1$ (or $x^{r-1}-x^{r-2}+\ldots-x+1$) is irrecacible, the eatry "I" is Eiven. Also, for some values of emg the irréAncible divisore of (x) may be obtained from those of period f by regacing x by x^{5}. Inis is indicated by the entry (f.g).

Finaly, for $p=2$ and 3 the entries are coded. Binary polynomials are dive the cuntomary octal regresentation; e.8., 7053 represents $x^{11}+x^{20}+x^{9}+x^{5}+x^{3}+x+1$. Termary polyponials are coded in the race $8 ;$ e.e., 370 represente $x^{5}+2 x^{3}+x^{2}+2 x+2$. Polynomisis for $p=5$ and are not contif i.e., the coefficients are read directiy from the ancerctice.

